
International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 224

Let Us Create a Physical IoT Device Using

AWS and ESP Module

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Research Fellow, Institute of Computer Science and Information sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2 Vice Chancellor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Area/Section: Computer Science.

Type of the Paper: Experimental-based Research.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed in: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.7779097

Google Scholar Citation: IJMTS

International Journal of Management, Technology, and Social Sciences (IJMTS)

A Refereed International Journal of Srinivas University, India.

CrossRef DOI: https://doi.org/10.47992/IJMTS.2581.6012.0265

Received on: 15/03/2023

Published on: 29/03/2023

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0

International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by Srinivas Publications (S.P.),

India are the views and opinions of their respective authors and are not the views or opinions

of the SP. The SP disclaims of any harm or loss caused due to the published content to any

party.

How to Cite this Paper:

Chakraborty, S., & Aithal, P. S., (2023). Let Us Create a Physical IoT Device Using AWS

and ESP Module. International Journal of Management, Technology, and Social Sciences

(IJMTS), 8(1), 224-233. DOI: https://doi.org/10.5281/zenodo.7779097

http://www.srinivaspublication.com/
mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.7779097
https://scholar.google.com/citations?user=bphF0BQAAAAJ
https://search.crossref.org/?q=10.47992%2FIJMTS.2581.6012.0265&from_ui=yes
https://doi.org/10.5281/zenodo.7779097

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 225

Let Us Create a Physical IoT Device Using AWS and ESP

Module

Sudip Chakraborty 1 & P. S. Aithal 2
1 D.Sc. Researcher, Institute of Computer Science and Information sciences, Srinivas

University, Mangalore-575 001, India,

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2 Vice Chancellor, Srinivas University, Mangalore, India,

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: This research paper explores the feasibility of creating a physical AWS IoT device

using an ESP module. The paper describes the steps and process of building such a device,

including the required hardware and software components. The ESP module is chosen for its

low cost, small size, and ability to connect to the internet through Wi-Fi. The AWS IoT

platform manages and monitors the device, including the ability to receive and send data to and

from the device. The paper includes a detailed explanation of the programming and setup

involved in creating the device and the challenges and limitations encountered during the

process. Ultimately, this paper demonstrates that creating a physical AWS IoT device using an

ESP module is possible, providing a cost-effective solution for developers looking to build IoT

devices. The project code is available to download.

Design/Methodology/Approach: Initially, we create things inside the AWS cloud. Download

all certificates and credentials. Then the downloaded credential, we added to the project

variable—the Code compiles and runs. Our ESP8266 hardware is then ready to receive the

topic. We use two channels to send the topic to our ESP Module. We can send topics using the

AWS cloud MQTT test client interface. Another way is from the C# dot net MQTT client

application. We develop an application in the visual studio that can update the AWS device

shadows. We will notice that data sending to the AWS Device shadows and updating the ESP

module almost in real-time.

Findings/Result: We use the ESP module to experiment with the AWS IoT interface.

Sometimes researchers need to transfer the data over IoT. So here we provide the complete

practical guide for IoT experiments. Here we demonstrate How to create the IoT devices and

send/update the IoT Devices' Shadow. We integrated the C# MQTT client. Using our created

application, we will update AWS cloud MQTT devices shadows. It might be more help full for

new researchers to integrate IoT into their projects.

Originality/Value: After studying Several documents, we created this paper after doing lots

of experiments so that our researcher could experiment easily. The available Code is wholly

tested and workable. Our researchers can integrate it into their projects with a little customizing

effort. The researcher can find some revenant documents for their research work.

Paper Type: Experimental-based Research.

Keywords: AWS IoT, IoT using ESP8266 and ESP32, IoT Practical Example

1. INTRODUCTION :

In recent years, the Internet of Things (IoT) has become increasingly prevalent, connecting devices and

allowing them to communicate. One of the most popular platforms for IoT development is Amazon

Web Services (AWS), which provides a suite of tools for managing and analyzing IoT devices. While

AWS offers a range of virtual services, building a physical IoT device can offer unique advantages in

terms of functionality and customization. This research paper will explore how to create a physical

AWS IoT device using the ESP module. The ESP module is a low-cost, Wi-Fi-enabled microcontroller

that can be easily programmed and integrated with AWS services. Following our step-by-step guide,

readers will learn how to build an ESP-based IoT device and connect it to AWS, opening up a world of

http://www.srinivaspublication.com/
mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 226

possibilities for their IoT projects. AWS IoT is a cloud-based platform that enables secure

communication between internet-connected devices and the AWS Cloud. It provides various services

such as device management, message brokering, data storage, and analytics to help developers build

and manage IoT applications. With AWS IoT, developers can easily connect, manage, and secure their

IoT devices and applications at scale. It supports protocols like MQTT, HTTP, and WebSocket and can

be integrated with other AWS services like Lambda, S3, and DynamoDB for advanced analytics and

machine learning.

The paper is organized as follows: Section 2 provides an overview of related work already done on IoT.

Section 3 discusses the objective of the research work. Section 4 highlights the methodology we used

for the research work. In section 5, we do the actual experiment. This section describes the procedure

for creating an IoT in the AWS cloud. Section 6 provides recommendations for further reading or

watching videos to understand the AWS IoT better. Finally, Section 7 concludes the paper and provides

future research directions.

2. RELATED WORKS :

Tawalbeh, M. et al., in their work, discuss different security models provided for Cloud-Enabled IoT

architectures security issues and propose a security model using Amazon Web Service (AWS) cloud

provider platform with Attribute-Based Access Control (ABAC) [1]. Jozef Mocnej et al., in their paper,

describe the utilization of edge computing in the IoT and analyze its impact on the energy consumption

of IoT devices [2]. Botez et al. discuss the design of a containerized IoT and M2M application and the

mechanisms for delivering automated scalability and high availability [3]. Joseph, S. et al. proposed

work on implementing an IoT-based heartbeat monitoring system. The proposed method is tested with

a photoplethysmography sensor interfaced with a microcontroller. Microcontroller monitors the

heartbeat sampling rate and then transmits discrete values over the ESP8266 Wi-Fi module [4]. Kalubi,

N. and S. Sajal research on Cloud computing. They demonstrate the relevancy of cloud servers for IoT

applications [5]. Medvedev, I. et al., in their paper, demonstrate the requirements for monitoring

patients' health using the Internet of Things (IoT) and cloud technologies [6]. G. N. Satya Sai et al.

proposed a system measuring five water parameters: Potential of Hydrogen (pH), Total Dissolved

Solids (TDS), Temperature, Turbidity, and Flow Rate. All this data is transmitted to the Amazon Web

Services (AWS) cloud platform hosted in Firebase and made available to the admin dashboard and User

mobile application (App). If any deviations occur in water quality, the user will get a notification, and

he/she can make a precise decision [7-12]. Sudip Chakraborty et. Al., in their paper, demonstrates how

to create an IoT inside the AWS cloud environment [13].

3. OBJECTIVES :

In the IoT field, AWS IoT is a secure and reliable domain. Recently the AWS interface has changed. It

is tricky to integrate, and there is some learning curve. After long research, we created and prepared

documents so our researcher could integrate AWS IoT. The research paper aims to provide some

reference information to the researchers trying to experiment with AWS IoT physical devices. We create

and provide an AWS IoT physical testing procedure using the C# MQTT client program. Nowadays,

The smart Home is becoming a necessary thing. Especially older people get to benefit from the

intelligent Home. The IoT is the backbone to operate or control any electrical appliances. Here we

provide a route map to build the IoT infrastructure.

4. APPROACH AND METHODOLOGY :

Figure 1 depicts the requirement of the parameter of the project. We are now discussing this in detail.

http://www.srinivaspublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 227

Fig. 1: Parameter requirement for the project

(1) To create an AWS physical IoT device, we chose ESP8266-based “NodeMCU 1.0(ESP-12E

Module)” and “DOIT ESP32 DEVKIT V1” under the subset of the ESP Eco-system. We selected

this module due to its availability and cheap. It is easy to test with a breadboard or a vero board.

Moreover, its form factor is also tiny.

(2) To communicate with AWS IoT, we need some modules. If the Arduino IDE is just installed, we

must install these modules before compiling the project from the Library manager.

(3) Our ESP module communicates with the AWS server over Wi-Fi. The Wi-Fi module needs a Wi-

Fi router to connect to the internet. The router may be the Fibre optic endpoint, or we can use our

mobile as a hotspot. When the module tries communicating with Wi-Fi, it needs login credentials,

ID, and password. The ID and password need to add to the secret.h module.

(4) After successfully connecting with Wi-Fi, the module will try to connect with the AWS cloud

server. The AWS will check the RootCA, Device, private key, MQTT host, topic, and things name.

If these are OK, then it will allow the client to connect.

(5) The ESP module registers the publisher and Subscriber callback function. When the topic is

available, AWS sends it to this module. We must go through the registered callback function to

update the data to the cloud.

(6) Once our Embedded side is ready, we need to test. When testing the C# MQTT client, we must

connect the working system with wired or wireless internet. The Wi-Fi credential does not need to

be added to our Code, but the operating system needs to connect with the network.

(7) In our C# code, we need two modules from the Nuget package manager else it throws a compilation

error.

(8) We need these for running the C# MQTT client module. We must add these lines to create a custom

module using the Nuget package manager.

(9) This part is the Subscriber and publisher. When we run the application, it will send the Data to the

AWS cloud in a specific interval.

5. EXPERIMENT :

Now we will do some experiments to create AWS IoT devices. Before proceeding with the experiment,

we recommend studying the below paper, where we discussed how to create an IoT device inside the

AWS cloud using screenshots. We also discussed the IoT creation process here but in a concise manner.

https://www.srinivaspublication.com/journal/index.php/ijcsbe/article/view/2283/875

http://www.srinivaspublication.com/
https://www.srinivaspublication.com/journal/index.php/ijcsbe/article/view/2283/875

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 228

 Create a thing: we need to follow the below steps:

1) Open the AWS IoT console

2) Select proper Region

3) Navigate All devices> Things> click on the Create things button > Create single thing> click

Next button.

4) Thing name: MyThing > click on Next > keep selecting “Auto-generated a new

certificate(recommended) > Next > click Create thing button.

5) Download the Device certificate, public key, private key, and Root CA1 certificate

6) Click Done.

7) Now, things are created.

Create Device Shadow:

1) Navigate All devices > Things > click on Things > “Device Shadows”

2) Click on Create Shadow > Type name: MyShadow.

3) Click on Create button.

4) The Shadow is created now.

Create Policies:

1) Navigate Policies> click on Create policy.

2) Name: MyPolicy

3) Under Policy action, select “*.”

4) Under Policy resource, type “*.”

5) Click on Create.

6) Now the policy is created.

Attach Policies:

1) Navigate Things > MyThing > click on Tab Certificates > click on Certificate ID > click on

Attach policies > from drop-down select MyPolicy.

2) Click on Attach policies.

3) Now our policy is attached to things.

Arduino IDE Setup:

1) Download Arduino IDE Arduino-ide_2.0.4_Windows_64bit. And install.

2) Download the project code from GitHub. The link is provided under recommend section.

3) Open the IDE. Click on the file menu > Open.

4) Goto ESP8266 folder>ESP8266_IoT>open ESP8266.INO file. The Code will open in a new

window.

5) Navigate File > Preferences > inside the “Additional boards manager URLs” textbox, and add

the line for both ESP8266 and ESP32 modules:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-

pages/package_esp32_index.json,

http://arduino.esp8266.com/stable/package_esp8266com_index.json

6) Under tools menu >Board > Boards Manager.. > in the search box, type “ESP8266” > click on

install. It may take a couple of minutes. After that, a Security Alert window may appear. Click

Allow access.

7) Under Tools menu >Board > esp8266 > select proper ESP module. Here we selected

“NodeMCU 1.0(ESP-12E Module)

8) Under Sketch menu >Include Library > Manage Libraries> in the search box, type

“PubSubClient” (by Nick O’Leary 2.8.0). Click install.

9) In the search box, again type “ArduinoJson” (Benoit Blanchon 6.20.1). Click install.

10) Click IDE “Verify” button, which is the build button. The compilation process takes a couple

of minutes. After that, the compilation summary is available at the bottom part of the IDE.

11) Our IDE and Code are error-free now. We need to customize it according to our own AWS IoT

credentials.

http://www.srinivaspublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 229

Fig. 2: Parameter requirement for the project

ESP8266 Code Customization:

1) Go to the secret.h file

2) Fill WI-FI_SSID[] and WIFI_PASSWORD[].

3) Copy the thing name from the AWS IoT console and Modify THINGNAME “MyThing.”

4) Under settings in the AWS IoT console, copy Endpoint and paste inside the MQTT_HOST[]= “.”

5) From the downloaded certificate, open AmazonRootCA1. Copy content between BEGIN

CERTIFICATE and END CERTIFICATE and paste inside cacert[].

6) Open device certificate x….x-certificate.Pem and copy and paste inside the client_cert[].

7) Open private key xx-private. Pem and copy-paste inside the privkey[].

8) In the ESP8266.INO file, at the top portion, add “publish” and “subscribe” topic name, which is

available under the Device shadow section.

9) Now our ESP8266 Code is updated. Connect the ESP module with the system.

10) Build and upload to the ESP module.

11) Open IDE terminal. If everything is OK, it will show the Wi-Fi connection, then connect with AWS

OK.

12) Now it will wait to receive the topic. If the topic is available, it will display inside the terminal.

Figure 3 display the received data.

http://www.srinivaspublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 230

Fig. 3: Data received by ESP8266 Module Displaying in the Terminal

ESP32 Modification :

The same procedure needs to follow for ESP32 Module.

Fig. 4: Topic Display inside the AWS console

Test procedure-1: using AWS

1) Open the AWS IoT console

2) From the left, select MQTT test client

3) Click on the Subscribe to a topic tab

4) In the topic filter text box, enter the topic name,

$aws/things/MyThing/shadow/name/MyShadow/get/accepted

5) Click on Subscribe button. The updated topic is displayed here if the C# application is running.

Figure 4 depicts the topic displayed in the AWS console.

Test procedure-2: using C# MQTT Client

1) Create a new console application inside visual studio 2022 or later.

2) Add the AWS_MQTT_Client.cs module, available inside the project folder.

3) Using the NuGet package manager install two packages. Newtonsoft.Json by James Newton-King and

M2MqttClientDotnetcore by M2MqttClientDotnetCore1.0.1
4) Open the AWS IoT console. From the Top right corner, Select the proper Region. From the left,

click on settings; under settings, copy Endpoint and paster program.cs iotEndpoint string

variable.

5) Navigate All devices>Things>MyThing>Device Shadows>MyShadows>MQTT topics>copy

/get/accepted topic and paste string variable into the topic.

6) From the downloaded certificate, copy “AmazonRootCA1.pem” and paste it inside the

\bin\Debug\net6.0 folder.

http://www.srinivaspublication.com/

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 231

7) Open https://www.sslshopper.com/ssl-converter.html to convert our certificate. Figure 5.4

depicts the web interface for certificate conversion.

Fig. 5: Certificate Conversion interface

8) Select Type To Convert To “PFX/PKCS#12”. Choose File xxx.private.pem.key File. Type of

Current Certificate “Standard PEM.”

9) In the PFX Password field, enter a password. Now click on the “Convert Certificate” button.

Change the certificate, rename device_certificate.cert, and paste it \bin\Debug\net6.0 folder.

10) The entered password needs to paste inside the program.cs password variable.

11) Build and run the application. The console will show the data sent to the cloud every second.

Figure 6 depicts the transmitted data.

Fig. 6: Transmitted data to AWS cloud

http://www.srinivaspublication.com/
https://www.sslshopper.com/ssl-converter.html

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 232

6. RECOMMENDATIONS :

 GIT repository project link: https://github.com/sudipchakraborty/Let-Us-Create-A-Physical-

AWS-IoT-Device-Using-ESP-Module.git

 We adopted documents on AWS IoT using ESP8266:

 https://www.youtube.com/watch?v=x9GfxgkEpXg&t=16s and the Code is available from

https://how2electronics.com/connecting-esp8266-to-amazon-aws-iot-core-using-mqtt/

 We adopted documents on AWS IoT using the ESP32 module

https://www.youtube.com/watch?v=hgQ-Ewrm48c&t=205s, and the Code is available from

https://how2electronics.com/control-relay-led-lamp-with-aws-iot-core-using-esp32/

7. CONCLUSION :

In conclusion, this research paper has presented a comprehensive guide to creating a physical AWS IoT

device using the ESP module. We have discussed the benefits of using AWS IoT for building connected

devices and outlined the steps involved in setting up an AWS IoT environment. We have also provided

a detailed explanation of the hardware and software components required to build an ESP-based IoT

device and how to connect it to AWS IoT. This project has demonstrated the feasibility of building IoT

devices using readily available hardware and cloud-based services. The ESP module is an affordable

and versatile platform that can build many IoT devices. By leveraging the power of AWS IoT,

developers can easily create, manage, and scale their IoT applications. Overall, this research paper

provides a valuable resource for developers and hobbyists interested in building IoT devices using the

ESP module and AWS IoT. We hope this guide will inspire further experimentation and innovation in

the field of IoT and encourage more people to explore the potential of connected devices.

REFERENCES :

[1] Tawalbeh, M., Quwaider, M. and Tawalbeh, L. A. (2020). Authorization Model for IoT Healthcare

Systems: Case Study, 11th International Conference on Information and Communication Systems

(ICICS), Irbid, Jordan, 2020, pp. 337-342, DOI: https://doi.org/10.1109/ICICS49469.2020.239527.

[2] Jozef Mocnej, Martin Miškuf, Peter Papcun, Iveta Zolotová, (2018). Impact of Edge Computing

Paradigm on Energy Consumption in IoT. IFAC-PapersOnLine, 51(6), 162-167,

https://doi.org/10.1016/j.ifacol.2018.07.147.

[3] Botez, Robert, Jose Costa-Requena, Iustin-Alexandru Ivanciu, Vlad Strautiu, and Virgil Dobrota.

(2021). SDN-Based Network Slicing Mechanism for a Scalable 4G/5G Core Network: A Kubernetes

Approach. Sensors, 21(11), 3773, 1-26. https://doi.org/10.3390/s21113773.

[4] Joseph, S., Shahila, D. F. D. and Patnaik, S. (2019). IOT based Remote Heartbeat Monitoring.

International Conference on Advances in Computing, Communication and Control (ICAC3),

Mumbai, India, 2019, pp. 1-5, DOI: https://doi.org/10.1109/ICAC347590.2019.9036735.

[5] Kalubi, N. and Sajal, S. (2022). Cloud Computing: Arduino Cloud IoT Integration with REST API.

2022 IEEE International Conference on Electro Information Technology (eIT), Mankato, MN, USA,

2022, pp. 473-476, DOI: https://doi.org/10.1109/eIT53891.2022.9814027.

[6] Medvediev, I., Illiashenko, O., Uzun, D. and Strielkina, A. (2018). IoT solutions for health

monitoring: Analysis and case study. 2018 IEEE 9th International Conference on Dependable

Systems, Services, and Technologies (DESSERT), Kyiv, Ukraine, 2018, pp. 163-168, DOI:

https://doi.org/10.1109/DESSERT.2018.8409120.

[7] Satya Sai, G. N., Sudheer, R., Manikanta, K. S., Arjula, S. G. Rao, B. N. and Sai D. V. Maneeswar

Mutyala, (2021). IoT based Water Quality Monitoring System, 2021 IEEE 9th Region 10

Humanitarian Technology Conference (R10-HTC), Bangalore, India, 2021, pp. 01-06, DOI:

https://doi.org/10.1109/R10-HTC53172.2021.9641630.

[8] Kurniawan, A. (2019). Internet of Things Projects with ESP32: Build exciting and powerful IoT

projects using the all-new Espressif ESP32. Packt Publishing Ltd.

[9] Swapnil Sen Pandey, A. K., & Das, K. K. (2018). IoT-Based Intelligent smart Metering

Infrastructure in Real-Time Environment. A Project Report. Google Scholar

http://www.srinivaspublication.com/
https://github.com/sudipchakraborty/Let-Us-Create-A-Physical-AWS-IoT-Device-Using-ESP-Module.git
https://github.com/sudipchakraborty/Let-Us-Create-A-Physical-AWS-IoT-Device-Using-ESP-Module.git
https://www.youtube.com/watch?v=x9GfxgkEpXg&t=16s
https://how2electronics.com/connecting-esp8266-to-amazon-aws-iot-core-using-mqtt/
https://www.youtube.com/watch?v=hgQ-Ewrm48c&t=205s
https://how2electronics.com/control-relay-led-lamp-with-aws-iot-core-using-esp32/
https://doi.org/10.1109/ICICS49469.2020.239527
https://doi.org/10.1016/j.ifacol.2018.07.147
https://doi.org/10.3390/s21113773
https://doi.org/10.1109/ICAC347590.2019.9036735
https://doi.org/10.1109/eIT53891.2022.9814027
https://doi.org/10.1109/DESSERT.2018.8409120
https://doi.org/10.1109/R10-HTC53172.2021.9641630
http://dspace.srmist.edu.in/jspui/handle/123456789/35686

International Journal of Management, Technology, and Social

Sciences (IJMTS), ISSN: 2581-6012, Vol. 8, No. 1, March 2023
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al. (2023); www.srinivaspublication.com

PAGE 233

[10] Gupta, V., Khera, S., & Turk, N. (2021). MQTT protocol employing IOT-based home safety

system with ABE encryption. Multimedia Tools and Applications, 80(2), 2931-2949. Google

Scholar

[11] Krishnan, B., Karakkat, A., Menon, R. M., & Vasudevan, S. K. (2022). An affordable, intelligent,

and fully functional innovative ventilator system. International Journal of Medical Engineering

and Informatics, 14(6), 550-563. Google Scholar

[12] Pearson, B., Luo, L., Zhang, Y., Dey, R., Ling, Z., Bassiouni, M., & Fu, X. (2019, May). On

misconception of hardware and cost in IoT security and privacy. In ICC 2019-2019 IEEE

International Conference on Communications (ICC) (pp. 1-7). IEEE. Google Scholar

[13] Chakraborty, S., & Aithal, P. S., (2023). Let Us Create An IoT Inside the AWS Cloud.

International Journal of Case Studies in Business, IT, and Education (IJCSBE), 7(1), 211- 219.

DOI: https://doi.org/10.5281/zenodo.7726980.

http://www.srinivaspublication.com/
https://link.springer.com/article/10.1007/s11042-020-09750-4
https://link.springer.com/article/10.1007/s11042-020-09750-4
https://www.inderscienceonline.com/doi/pdf/10.1504/IJMEI.2022.126525
https://ieeexplore.ieee.org/abstract/document/8761062/
https://doi.org/10.5281/zenodo.7726980

