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ABSTRACT 

Purpose: Massive multi-core architecture is rapidly becoming the standard in digital 

technology due to its high and parallel computational capability and performance benefits. To 

fully utilize the technological capabilities of multi-core systems, system software such as 

compilers should be re-engineered for parallel processing. Several important contributions 

have been made in the past to enhance the efficiency of the lexical analysis process by 

leveraging the innate parallel processing capability of multi-core computers. This trend of 

implementation shows that a parallel lexical analyzer tends to perform lexing tasks better than 

a conventional sequential lexical analyzer. This article discusses the way of making the tasks 

in parallel during the scanning of source program in the phase of lexical analysis. The 

objective of this study is to explore how to perform lexical analysis in parallel. On multi-core 

processors, multiple processes of the lexical analyzer program can run concurrently to scan 

multiple lines in the input stream in parallel for token detection. This is done by allocating 

tasks line-by-line to the core which is not engaged yet.  

Design/Methodology/Approach: Developing a theoretical and experimental approach for 

parallelizing the lexical scanning process on a multi-core system. 

Findings/Result: According to the theoretical and experimental results, the proposed 

methodology significantly outperforms the sequential approach in terms of tokenization. It 

considerably reduces the time required for lexical analysis during the compilation process. 

The result establishes unequivocally that the parallel lexical analyzer's performance should 

scale linearly with the number of cores. It is clearly observed that the speedup is expected to 

increase further if the number of CPU cores increases. This enhancement would speed up the 

compilation process even more. 

Originality/Value: A dynamic task allocation algorithm is developed for the concurrent 

execution of a lexical analyzer task on multi-core systems. 

Paper Type: Experimental Research. 

Keywords: Multi-core machines, Lexical analyzer, Task allocation 

1. INTRODUCTION : 

Phase one of the multi-phase compiler is referred to as scanning or lexical analysis, during which the 

input stream is scanned and tokenized [1]. A lexical analyzer, alternatively referred to as a lexer, is a 

pattern recognition engine that is simulated using a mathematical computational model called a Finite-

State Machine (FSM) [2]. It reads a string of individual characters from the source code and clusters 

them into constructive sequences called lexemes using the token pattern. As an outcome, it generates a 

stream of tokens for syntax analysis. It is the most time-consuming operation and has a noticeable impact 
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on the performance of a compiler. Modern processors have evolved to become increasingly multi-core 

in nature. Due to the fact that the majority of compilers are single-threaded, they are unable to take 

advantage of the resources available on modern computers. As a consequence, compiler performance 

has declined precipitously. According to studies [3], the most computationally intensive phase of the 

compiler is the lexical analyzer, and optimizing this phase alone can significantly improve the compiler's 

overall performance. This paper presents an efficient method for achieving the tasks in parallel, in the 

lexical analysis phase. This has been processed on multi-core processors. These processors tokenize the 

strings in parallel from the different lines of the source file. The process makes use of all available 

processing resources to achieve high performance in a compiler. The result demonstrates an 

improvement in performance in aspects of the overall time required to recognize the tokens during the 

compilation process. In comparison with sequential lexical analysis on a single processor system this 

will be faster. The remainder of the article is structured as follows. The Section 2 examines some seminal 

works in this field. Section 3 discusses the objectives of this work. Section 4 discusses an algorithm 

from a theoretical and experimental perspective. Section 5 evaluates the proposed algorithm using 

representative test cases and illustrates the performance improvement. Finally, Section 6 concludes. 

2. RELATED WORK : 

Numerous seminal works have been published in the past about determining which, tasks a compiler 

can perform in parallel. Mickunas et al. [4] identified for the first-time distinct areas within the 

compilation process that are amenable to parallel processing. They advanced a novel theoretical 

framework in which lexical analysis is divided into 2 levels: scanning as well as screening. They opined 

that text scanning could be performed concurrently. Daniele Paolo Scarpazza et al. [5] made significant 

contributions to the advancement of a parallel lexical analyzer. As an experiment, the original Flex 

kernel was optimized to execute on a multi-core cell processor. Umarani Srikanth [6] explored the 

possibility of parallelizing a lexical analyzer for cell processors. The approach is founded on segmenting 

the original source code into a predetermined number of chunks and performing lexical analysis tasks 

in parallel. The Aho-Corasick algorithm is used to recognize tokens in that experiment. When the 

parallel version of the lexical analyzer process is run on a system equipped with an IBM Cell Processor, 

a performance boost is observed. Amit Barve et al. [7] attempted to parallelize a lexical analyzer using 

the concept of processor affinity. The method is based on detecting and identifying tokens in parallel in 

for-loop statements in source code. The Round Robin scheduling algorithm is used to allocate tasks to 

various CPUs. The result shows a decrease in speedup due to a CPU being unable to obtain sufficient 

work after completing the current task assigned to it. Additionally, due to the single read head on disk, 

each processor in the I/O queue experiences a significant delay. Amit Barve et al. [8] tried to improve 

the method for parallel lexical analysis using the memory block. The buffer is used in this algorithm to 

store for-loop statements detected in source code via a pivot location file containing the starting and 

ending points of each for-loop. The tokens are recognized by processing each line in buffer in parallel 

using OpenMP programming. 

In order to perform parallel lexical analysis, the research works presented in [6-8] divided original source 

code into fixed-size chunks based on certain criteria. The blocks are then distributed among the cores 

for parallel execution of lexical analysis. None of the experiments used a dynamic task allocation 

strategy. This article demonstrates how to accelerate a parallel lexical analyzer algorithm by allocating 

tasks line-by-line to unused cores on multi-core processors. As a result, none of the cores that are 

available are idle. 

3. OBJECTIVES : 

The main objective of this research is to design and develop theoretical and experimental approach for 

parallelizing the lexical scanning process on a multi-core system. The objectives of this research work 

have been 

(1) To design and develop a dynamic task allocation algorithm for a parallel lexical analyzer on multi-

core systems for achieving the tasks in parallel. 

(2) To analyze the performance enhancements of the parallel lexical analyzer using a dynamic task 

allocation algorithm on multi-core systems with increased numbers of CPU cores. 

(3) To compare the performance of a sequential lexical analyzer running on a single core to a parallel 

lexical analyzer running on a multi-core system utilizing a dynamic task allocation algorithm. 
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4. METHODOLOGY : 

Is split into two parts: 

(1) Theoretical approach to an algorithm 

(2) Experimental approach  

 

4.1 Theoretical approach to an algorithm: 

In a multi-core system, let us consider that K numbers of cores are available. These K numbers of cores 

are working in parallel to process the lexical scanning in parallel. This is done without disengaging any 

of the processors. When each processor completes their process it will inform that it is idle now and 

consequently it gets the next work at the same time. In this work, it is called as dynamic allocation of 

the task to the processors.  These processors are happening without a gap of work scheduling.  

The above process can be explained theoretically as follows. Let “k” be the number of lines in the 

program which is to be processed for lexical analysis.  Let us consider 𝑡𝑖   as the time taken for ith line 

for the recognition of the token of that line. As said earlier, K is the number of cores of the processors. 

Let T be the total time taken for the recognition of the token for the full program, which is in 

consideration.  

The time required for the complete lexical analysis depends on three parts. 

1. Case 1: If the number of cores is greater than the number of lines in the program.   (k < K) 

2. Case 2: If both are equal (k = K) 

3. Case 3: If the number of cores is less than the number of lines in the program.   (k > K) 

In the first case, it is requirement of number of cores are more than that of number of lines of the 

program. Hence, definitely the time taken for the longest line is the time taken for the whole process. 

Let us consider ith line is the longest line; therefore, the total time taken for the whole process is ti. 

However, there are two more cases in this. They are  

a. All the lines of the program are of equal length. 

b. All the lines in the program are of different length.  

In case ‘a’, all lines of the program is of equal length; in this case, the total time taken is the average 

time for the execution as per equation number (1) or the time taken for a single line for the execution. 

 

  𝑇 = 𝑡̅ = [∑ 𝑡𝑖
𝑘
𝑖=1 ] 𝑘⁄     (1) 

 

Example 4.1: A program with 8 numbers of lines, each line having 6 tokens. This program is given to 

an octal core computer to evaluate the lexical analysis in parallel. The total time taken for this is the 

average time taken for the evaluation or time taken for a single line.   

In the second case ‘b’, with all the lines of the program are of different lengths, then the simply it may 

be considered as the time taken for the line which takes the maximum time for the analysis.   

Example 4.2: A program with 8 numbers of lines. This program is given to an octal core computer to 

evaluate the lexical analysis in parallel. The average time taken for recognizing token is 13ms. Line 

number 1 and 4, takes 11ms, 2 and 3 takes 12ms, 7 and 8 takes 14 ms, 5 and 6 takes 15ms. With the 

standard deviation of these values is 14.57ms. Total time taken for the evaluation of full program can 

be calculated as maximum time taken for the execution of a single line that is 15ms. 

Again, in the second case, that is, case 2, also the same situation arrases since both, that is, the number 

of cores and the number of lines to be analyzed, are the same.  Then the above explanation and set of 

equations hold good for this case also. Again, there are two cases: ‘a’ and ‘b’. In case of ‘a’, the time 

taken is 𝑡̅  or time taken for a single line, and in the case ‘b’, the total time taken is the time taken for 

the line which takes the maximum time for the execution.   

In the third case, the number of lines in the program is more than the number of cores. Here all cores 

are to be working with its fullest extent. Since total number of lines to be executed is more than the 

core. There are two cases:  

A. The number of lines in the program is integer multiples of the number of cores GCD(k,K) ≠1 

B. The number of lines of program is not an integer multiple of numbers of core  GCD(k,K) = 1 

That is, as said earlier, let k be the number of lines in the program and K be the number of cores in the 

system. Then the case ‘A’ is defined as GCD (k,K) ≠1case ‘A’ is defined asGCD (k,K) = 1and , in both 

cases k > K. 
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Now define the total time taken by the ith  core to analyze lexically is 𝑇𝑖.  Therefore, the total time taken 

for lexical analysis of a given program is given for case A which can be handled as two more cases.  

Ά. All the lines of the program are of equal length (as per the token is concerned)  

β. All the lines of the program are of different lengths.       

For the case Ά the total time taken is given by the equation (2) as follows  

 

𝑇 = �̿� =  
1 

𝐾
[∑ 𝑇𝑖

𝐾
𝑖=1 ]    (2) 

 

That is an average of the time taken by the core to analyze the program.  

Example for case Ά: Example 4.3: A program with 16 numbers of lines. This program is given to an 

octal core computer to evaluate the lexical analysis in parallel. The average time taken for recognizing 

token is 12ms for all lines. As per equation (1), the time taken can be evaluated as 24ms.   

In the second case β, since the GCD (k,K) ≠1 there is a mismatch between the lines of program and the 

total number of cores. In this case, the total time taken by the cores is defined as  

 

   𝑇 =
1 

𝐾
{[∑ 𝑇𝑖

𝐾
𝑖=1 ] + [∑ √�̿�2 − 𝑇𝑖

2𝐾
𝑖=1 ]}  (3) 

 

Example for case β: Example 4.4: A program with 16 numbers of lines. This program is given to an 

octal core computer to evaluate the lexical analysis in parallel. The average time taken for recognizing 

token is 13ms. Line number 1, 4, 6 and 14 is takes 11 ms, 2, 3, 5 and 13 is takes 12ms, 7, 9, 10 and 16 

is takes 14 ms, 8, 11, 12 and 15 is takes 15ms. With the standard deviation of these values is 10.303ms. 

The total time taken for the evaluation of the full program can be calculated by adding these two values, 

which is average and standard deviation. Hence approximately, will get, the total time taken for the 

evaluation of the full program that is 23.303ms. This includes an average of 13ms and a standard 

deviation of 10.303ms.   

          

4.2 Experimental approach: 

To facilitate parallel tokenization across multiple cores, integrate the dynamic task allocation algorithm, 

which assigns tasks line-by-line to the core that are not currently engaged. This algorithm uses a set of 

techniques that take advantage of multi-core features such as multi- processing and processor affinity. 

To process a specific source file is taken. To facilitate efficient file access within the algorithm, the 

source file is first mapped to a process address space. Memory mapping is a method of loading a file 

directly into computer memory [9]. This prevents processor in the I/O queue from experiencing a delay, 

resulting in a significant improvement in file I/O performance. The algorithm creates a new child 

process for each line read from the buffer to run the instance of LEX program. The same is then assigned 

it to the core that is not currently engaged. As a result, assigned core concurrently tokenizes string from 

each read line. The line-by-line task allocation to the cores that are not currently engaged can be 

accomplished by the following algorithm. 

Algorithm DYNAMIC TASK ALLOCATION. Given source file SOURCE written in C programming 

language, this algorithm allocates tasks to the core that are not currently in use, in a line-by-line fashion.  

As a result, assigned core concurrently tokenizes string and places generated tokens in global table. The 

array BUFFER is used to store source file line by line and each read line is stored in variable LINE. 

The number of available cores is stored in variable CPU_COUNT and core that are not currently 

engaged are stored in array CPU_QUEUE. The variables FRONT and REAR are used to process the 

queue. The variable C_FLAG indicates child process's completion flag and variable PA_FLAG 

represents processor affinity. 

Input:  Source file say source.c 

Output: Parallel token generation 

Method: 

1. [Open file] 

   Open SOURCE file in READ mode for input 

2. [Loop to read each line from source file] 

     Repeat while not end of SOURCE file 
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          Read from SOURCE file into BUFFER 

3. [Close file] 

          Close SOURCE file 

4. [Initialize cpu core counter] 

          CPU_COUNT ← number of available cores 

5. [Initialize cpu queue to available cores ] 

          Repeat for i = 1, 2, .., CPU_COUNT  

               CPU_QUEUE[i] ← i 

6. [Initialize front and rear variables] 

          FRONT ← 1 

          REAR ← CPU_COUNT 

7. [Process each line from the buffer and do the following in parallel] 

          Repeat while not end of BUFFER 

               Read from BUFFER into LINE 

        if CPU_COUNT ≠ 0 (check cores are free?) 

        then     PA_FLAG ← CPU_QUEUE[FRONT] 

                    Repeat for i = 1, 2, ..,, REAR-1 (Shift all the available cores in cpu queue     

                                CPU_QUEUE[i] ← i + 1       from index 2 till rear to the left by one) 

               REAR ← REAR – 1              

               CPU_COUNT ← CPU_COUNT – 1 

                               Pi ← fork()  (Create a child process to run instance of LEX program) 

                            sched_setaffinity(Pi, PA_FLAG)   (function to set processor affinity) 

                            Set C_FLAG ← 0 (to indicate core has assigned a task) 

                            yy_scan_string(LINE)  (function to scan the line) 

                            yylex()  (function to tokenize the line and  stores tokens in global table) 

                            Set C_FLAG ← 1 (to indicate core has completed assigned task) 

                            if C_FLAG =1 

                            then     CPU_QUEUE[REAR]= PA_FLAG 

                        CPU_COUNT ← CPU_COUNT + 1 

    else     Repeat from previous LINE from BUFFER (when cores are not available) 

8.   [Finished] 

Exit 

5. EXPERIMENTAL RESULTS : 

The above algorithm has been tested on a machine equipped with an Intel Core i5-9400F 6-Core 2.90 

GHz Processor and 8GB RAM. The test is conducted on a machine with operating system Ubuntu 

18.04.5 LTS installed. Multiple source files of varying sizes are considered to validate the algorithm. 

The algorithm is implemented using C programming language with fork system call to create new child 

processes to run the multiple instances of LEX program on different cores in parallel. Each new child 

process created is bound to specific CPU by using CPU affinity. Whereas the conventional LEX tool 

generated sequential lexical analyser runs on a single core. Experimental results for a variety of CPU 

core counts and source files of varying sizes have been compiled and summarized in Table 1 and 

illustrated in Figure 1.  

The result establishes unequivocally that the parallel lexical analyzer's performance should scale 

linearly with the number of cores. The effect on speedup using sequential and parallel lexical analyzer 

is shown in table 2. Figure 2 illustrates the performance enhancements associated with increasing the 

number of CPU cores. The speedup is defined as the ratio of serial to parallel execution time, which is 

calculated using the following equation (4). 

 

Speed up = 

Time  taken for 
sequential lexical analysis

 using a  single core
Time taken for 

parallel lexical analysis
using multiple cores

   

 = 

Time  taken for 
sequential lexical anaysis

using a single core
Time taken for 

parallel lexical analysis
 using 4 cores   

 

    = 
0.0131256

0.0056938
 = 2.3052443X           (4) 

 

http://www.srinivaspublication.com/


International Journal of Management, Technology, and Social 

Sciences (IJMTS), ISSN: 2581-6012, Vol. 7, No. 1, April 2022 
SRINIVAS 

PUBLICATION 

Vaikunta Pai T., et al. (2022); www.srinivaspublication.com 

 

PAGE 251 

 

 

Table 1: Time required to perform sequential and parallel lexical analysis on C programs with varying 

numbers of CPU cores 

Experiment 

Number 

File 

Size 

(Lines) 

No. of 

Tokens 

Generated 

Time 

Taken for 

Sequential 

Lexical 

Analysis 

using a 

single core 

Time Taken (in seconds) by 

Parallel Lexical Analyzer 

2  Cores 3 Cores 4 Cores 

1 67 483 0.0032186 0.0027752 0.0018410 0.0013569 

2 78 499 0.0034874 0.0029786 0.0019969 0.0013826 

3 80 333 0.0027882 0.0023855 0.0016040 0.0012090 

4 130 494 0.0045738 0.0038190 0.0024980 0.0019639 

5 138 637 0.0051238 0.0041888 0.0030250 0.0022480 

6 149 522 0.0049501 0.0041356 0.0027848 0.0020106 

7 173 875 0.0065838 0.0053520 0.0036551 0.0026528 

8 174 836 0.0095566 0.0074690 0.0048768 0.0038000 

9 298 1044 0.0115459 0.0091558 0.0058018 0.0047130 

10 348 1672 0.0131256 0.0102800 0.0074921 0.0056938 

 

Table 2: The effect on speedup using sequential and parallel lexical analyzer with different no. of CPU 

cores 

Experiment 

Number 

File size 

(Lines) 

Speedup 

Using 2 Cores Using 3 Cores Using 4 Cores 

1 67 1.1597723 1.7482890 2.3720245 

2 78 1.1708185 1.7464069 2.5223492 

3 80 1.1688116 1.7382793 2.3062035 

4 130 1.1976434 1.8309848 2.3289373 

5 138 1.2232143 1.6938182 2.2792705 

6 149 1.1969484 1.7775424 2.4620014 

7 173 1.2301570 1.8012640 2.4818305 

8 174 1.2795019 1.9596047 2.5148947 

9 298 1.2610476 1.9900548 2.4497984 

10 348 1.2768093 1.7519254 2.3052443 

 

 

Fig. 1: Graph of experiment number v/s time taken in sequential and parallel lexical analysis with a different 

number of CPU cores 
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Fig. 2: Graph of speedup efficiency in parallel lexical analysis for various numbers of CPU cores 

6. CONCLUSION : 

This article discusses how to perform tasks in parallel while scanning the source code for the lexical 

analysis phase. The proposed dynamic task assignment algorithm assigns tasks line-by-line to available 

multiple cores that are not currently in use. As a result, the assigned core tokenizes the string 

concurrently. The parallelization approach significantly enhances the lexical analyzer's performance, as 

demonstrated by the above result analysis statistics. As per experimental results, when four processes 

and cores are used, the proposed methodology significantly outperformed the sequential approach by 

recognizing tokens in 0.0056938 seconds. The speedup of the parallel application is 2.3052443X. It is 

clearly observed that the speedup should increase at or close to the same rate as the number of cores 

increases. Implementations of this algorithm can be enhanced to generate lexical analyzers. 
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