
International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 78

An Inverse Kinematics Demonstration of a

Custom Robot using C# and CoppeliaSim

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2Vice-Chancellor, Srinivas University, Mangalore, India

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Area of the Paper: Computer Science.

Type of the Paper: Simulation-based Research.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed In: OpenAIRE.

DOI: http://doi.org/10.5281/zenodo.4755778

Google Scholar Citation: IJCSBE

International Journal of Case Studies in Business, IT and Education (IJCSBE)

A Refereed International Journal of Srinivas University, India.

Crossref DOI : https://doi.org/10.47992/IJCSBE.2581.6942.0102

© With Authors.

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0

International License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Srinivas Publications

(S.P.), India are the views and opinions of their respective authors and are not the views or

opinions of the S.P. The S.P. disclaims of any harm or loss caused due to the published content

to any party.

How to Cite this Paper:

Chakraborty, Sudip, & Aithal, P. S., (2021). An Inverse Kinematics Demonstration of a

Custom Robot using C# and CoppeliaSim. International Journal of Case Studies in

Business, IT, and Education (IJCSBE), 5(1), 78-87. DOI:

http://doi.org/10.5281/zenodo.4755778.

http://www.srinivaspublication.com/
mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com
http://doi.org/10.5281/zenodo.4755778
https://scholar.google.com/citations?user=yGYPA1MAAAAJ
https://search.crossref.org/?q=10.47992%2FIJCSBE.2581.6942.0102&from_ui=yes
http://doi.org/10.5281/zenodo.3976932

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 79

An Inverse Kinematics Demonstration of a Custom Robot

using C# and CoppeliaSim

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2Vice-Chancellor, Srinivas University, Mangalore, India

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: Inverse Kinematics (I.K.) is not as easy as Forward kinematics (F.K.), where we get

a definite result. I.K. algorithm provides several possible solutions. From those finding the best

solution is such a critical task. For standard robots which are commercially available in the

market, the user is not concerned about I.K.'s complexity. They provide the control board and

programming IDE to make it easy. However, when we develop a robotic arm from our D.H.

parameter and driver board, complexity arises due to lots of difficulties for executing and

successful completion. To make life easy, keeping CoppeliaSim background can eliminate the

calculation overhead and get good results. The custom robot is running with less computation

power. It may be a good approach. We are using C# for User Interaction. Following step by

step, anyone can create a robust I.K. engine with little effort. The complete code is available in

GitHub to test and experiment further.

Design/Methodology/Approach: The data are propagated through Interprocess

communication. For the user interaction, we use visual studio IDE using the most accessible

language, C#. The user interaction data are sent to another application, CoppeliaSim, which

calculates inverse kinematics, and effective results are displayed through robotic arm

movement.

Findings/Result: Implementing this procedure can get the excellent result of the robotics arm.

Furthermore, by imposing the Value on the real robot, we can get effective results. It minimizes

the research overhead on I.K. calculation.

Originality/Value: Without knowing I.K. calculation complexity, receiving the Value, we can

apply it to the real robot. Two issues we can solve here. One is the calculation, and another one

is experiment overhead.

Paper Type: Simulation-based Research.

Keywords: Inverse Kinematics, I.K., 7DF Robot, I.K. Calculation, CoppeliaSim with C#, C#

socket communication, CoppeliaSim Socket Programming.

1. INTRODUCTION :

Inverse Kinematics is a challenging task for every robot researcher engaged with a serial manipulator

or robotics arm. There are no methods available where we can get better or perfect results. It takes lots

of computation overhead, which requires a high computation capability system, which is too much

costly on project budgets. Unlike forward kinematics, I.K. (Inverse kinematics) has no definite solution.

From the multiple results, the best path selection sometimes tricky. For robotics arm research,

simulation helps us to see the outcome. To get the best result and observing the development, we will

use the CoppeliaSim Robot simulator. It is free and Open-source. So, anyone can start an experiment

just by downloading them from their website. We create a custom 7df robotic arm [1], then we configure

for I.K. execution by setting all joints as an inverse kinematics model and joints rotation limitation.

Then starts the simulation. From our c# application, we move the target location and get the joints value.

Which can be feed to the real robot. We observe in the simulator, the robot reaches the target or not. If

the target is different from the tip position, get the message. We can use a robot driver with a low

footprint CPU because primary processing of I.K. calculation by the robot simulator.

http://www.srinivaspublication.com/
mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 80

2. RELATED WORKS :

Sudip Chakraborty et al. in their paper demonstrate how to create a Custom Robotic A.R.M. in

CoppeliaSim" [2]. Deepak Tolani et al. developed a set of inverse kinematics algorithms that is basically

for an anthropomorphic arm [3]. Dinesh Manocha and John F. Canny present an algorithm and

implementation for efficient inverse kinematics for a general 6R manipulator [4]. Li-Chun et al.

proposed a method based on a combination of two nonlinear programming techniques [5]. ANDREW

A. et al., in their paper, shown a method on a new rapidly convergent constrained nonlinear optimization

algorithm that uses a modified Newton-Raphson technique [6]. Gaurav et al., in their paper, focus on

two established procedures, the pseudo inverse with explicit optimization and the extended Jacobian

method [7]. Samuel R. et al., in their paper, introduced two ways for the inverse kinematics of multi

bodies with multiple end effectors. The second method used damped least-squares called selectively

damped [8]. Paolo Baerlocher et al. present an efficient recursive algorithm [9]. Daniel R. et al. have

been proposed that high joint speeds could be avoided by introducing redundant joints and using an

appropriate kinematic inversion algorithm [10]. Sreenivas Tejomurtula presents a solution based on

structured neural networks that can be trained quickly. The proposed method yields multiple and precise

answers, and it is suitable for real-time applications [11]. Aristidou et al. in their paper, suggest that

I.K.'s family of solvers is best suited for particular problems [12].

Andreas Aristidou et al. implement FABRIK, a fast, iterative solver for the Inverse Kinematics problem.

It has a low computational cost and produces visually realistic poses. Constraints can easily be

incorporated within multiple chains with multiple end effectors are also supported [13]. Serdar Kiiqiik

et al. approach closed-form solution of robot inverse kinematics problem [14]. R. M¨uller-Cajar1 et al.

introduce a new method utilizing the law of cosines of a kinematic chain when given a target. their

method incurs computational and rotational costs than Cyclic-Coordinate Descent (C.C.D) [15].

Manfred L. Husty et al. introduces a very efficient algorithm to compute the inverse kinematics of a

general 6R serial kinematic chain. The main idea is to use classical multidimensional geometry to

structure the problem [16]. C.S.G. Lee et al. Introduces I.K. of PUMA robot calculated in two stages.

The first three joints are calculated by looking at the projection of the position vector. The last three

joints are solved using the calculated joint solution from the first three joints [17]. Joey K. Parker

proposed a genetic algorithm that allows additional constraints to be specified easily. The GA is applied

to a test problem in which the maximum joint displacement in a point-to-point positioning task is

minimized [18]. Shaher Momani et al., in their paper, the solution of inverse kinematics problem of

robot manipulators using genetic algorithms (G.A.) [19]. Tarık C et al. experiment with robotic

manipulator by using cubic trajectory planning. [20]. Patrick Beeson et al. provides quantitative

comparisons, using multiple humanoid platforms, between an improved implementation of the K.D.L.

inverse Jacobian algorithm [21]. PYUNG H. CHANG et al. proposed a method that same equilibrium

state for the resolved-motion method. The method is demonstrated to give more accurate trajectories

than the resolved-motion method [22].

Stefan Chiaverini et al., in their paper, present experimental results on the implementation of the

damped least-squares method for the six-joint ABB IRb2000 industrial robot manipulator. Several

inverse kinematics schemes are reviewed, which allow robot control through kinematic singularities

[23]. Dominik et al. have an excellent approach to robot experiments using Rapidly-exploring Random

Trees (RRTs) [24]. Bekir Karlik et al., in their work, implement the kinematics of a six-degrees-of-

freedom robot manipulator using ANN [25]. De Xu et al., in their report, propose an analytical solution

for a 5-DOF manipulator [26]. Ahmed El-Sherbiny et al., in their article, presents a comparative study

between different soft computing-based methods applied to the problem of inverse kinematics. [27].

John Q. Gan et al. paper presents the first complete analytical solution to the inverse kinematics of the

P2Arm [28]. Jingguo Wang1et. Al, in their paper, A seven‐DOF redundant manipulator is designed to

do the computer simulations, and the natural experiments are carried out on a Power cube modular

manipulator. Their results demonstrated the effectiveness of the proposed algorithm [29]. V.N. Iliukhin

et al. carried out research aimed at creating a robotic manipulator controlled employing Brain-Computer

Interface for improving household self-reliance of persons with disabilities and expanding the scope of

their activity [30]. Michal Kelemen et al. a new algorithm for the control of kinematically-redundant

http://www.srinivaspublication.com/

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 81

manipulator considering three secondary tasks, namely a joint limit avoidance task, a kinematic

singularities avoidance task, and an obstacle avoidance task [31].

Studying the above-related novel research, we realize that all need heavy computation power CPU to

operate with the real-time operation. For lower footprint, the CPU control board is a bottleneck to

execute the task. So, we distribute the calculation overhead to the simulator and our robot can run

smoothly.

3. OBJECTIVES :

(1) We solve the I.K. calculation in a unique approach using the CoppeliaSim simulator.

(2) Introduce CoppliaSim simulator as an I.K. solver.

(3) From this Experiment, we can drive the joints motor of the actual robot.

(4) We can easily find digital clone solutions for robot movement.

(5) From this experiment, we can learn how TCP/IP socket communication is established between two

applications.

4. APPROACH AND METHODOLOGY :

The complete block diagram of our Experiment is below.

Fig. 1: The block diagram of our Experiment

Here the two applications play a significant role. CoppeliaSim is shown on the left side, and the visual

studio is on the right side. The CoppeliaSim constitutes several modules. When open the simulator, the

first appear Workspace where we build a robot using our custom D.H. parameter [2]. Then we add the

LUA script into the robot base object. We set some configurations to operate the inverse kinematics

through the program. Then run the system. It creates a server socket and waits for client requests. It

responds upon client request and processes I.K. through the simulator's I.K. Engine. On the other side,

for user interaction, we develop a user Interface using C# language. When the C# application runs, it

opens a window with some element for user interaction. Changing the target position, we can observe

that the robot is following the target. If it happens, our Experiment is successful. We can change the

D.H. parameter for further Experiments, and taking the result can drive another robot's joints in real

robots. Create the visual studio application, and we take the help of internet tutorials. In recommend

section, we can get the link for this project's source code.

5. EXPERIMENT :

Now we can start our Experiment. We need to figure out the D.H. parameter of our custom robot and

create a robotic arm [2] in the CoppeliaSim environment. We can go with the below D.H. parameter

or create our own.

http://www.srinivaspublication.com/

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 82

Table 1: List of D.H. Parameter of Custom Robot

 Link d(meter) a(meter) (Deg.)

1 0.0400 0.0000 0.0000

2 0.0000 0.0000 90.0000

3 0.0000 0.0550 0.0000

4 0.0000 0.0400 0.0000

5 0.0000 0.0000 0.0000

6 0.0000 0.0270 0.0300 0.0000

7 0.0000 0.0270 -0.0300 -90.0000

Fig. 2: After designing the robot, it looks like the above figure

Fig. 3: IK group selection

After completing the design, from the side Toolbar, select the "Calculation Module properties" Button

(f(x)). The calculation module window will open. Then from the Kinematics Tab, press "Add new I.K.

group." it will add one I.K. group under the button. Double click and rename it as "ud." It can be

anything. For better understanding, we select the name to understand. "ud" stands for undamped. We

have then checked on "Explicit handling." which is the most crucial parameter. If uncheck, IDE will

http://www.srinivaspublication.com/

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 83

automatically process I.K., and it is not able to control from scripts. Moreover, we cannot get the status

of I.K. is failed or not.

Furthermore, under the "Calc. method," select "Pseudo Inverse" for the damped method. Next, we have

to press "Edit I.K. elements." From the combo box, select "tip." and press the left side button "Add new

I.K. element with the tip." It will create an I.K. element "tip." It is shown in the box, which is under the

button. The complete windows look like figure 4. then close the windows and another I.K. group we

need to create. It the same way as we see before.

Fig. 4: IK selection window

Sometimes only one single procedure cannot solve the problem and does not reach the given target. So

alternate method should try, and if again fails, we can assume that the end effector is unreachable to the

given target.

Now we add another I.K. group using D.L.S. methods, i.e., Damp least square method. We press the

button" Add new OK group." Remane "dmp" like that. Must check "Explicit handling" to operate I.K.

from LUA script. Select "D.L.S." from Calc. method. Next, press the Edit I.K. elements button. From

the top combo box, select tip and press the left side button "Add new I.K. element with the tip." Close

the window. The final selection looks the figure 5.

http://www.srinivaspublication.com/

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 84

Fig. 5: DLS method selection window

Now we must add some code inside the scripts. See recommendation section for link. After adding the

code, if we run the CoppeliaSim pressing the run button, it will not respond. The cause is that after

running the simulation, it starts the TCP server using socket 6000. It is a blocking function. It waits for

the client's request. The arrival of the client request will back in the main loop and execute the following

code. So, we suggest that after adding the code, do not run. We need to do another side as well, i.e., the

visual studio part. Open visual studio. Create a new project. We can create this type of user interface or

as our requirement. For U.I. creation, we can take help from the internet. After U.I. creation, we can

add the code to each U.I. element. Build the code. It should build successfully. The prebuild executable

code is available inside the downloaded folder. Now we run the P.C. application, then CoppeliaSim by

the run button. If everything is OK, changing the slider, the robot will move. The Open and Close Button

is to operate the gripper (figure 6).

Fig. 6 : Inverse Kinematics Demonstration

The end effector has three orientations. For Translation TX, T.Y. and T.Z. For x-axis movement, change

the slider position TX labelled. For Y-axis movement, change T.Y. tagged slider and for Z axis

movement, change the T.Z. Slider. Another three sliders for rotation orientation. R.X. Slider for

Rotation around X-axis, R.Y. for Y-axis movement, and R.Z. for rotation around the Z-axis. These

rotation buttons for the further scope of improvement. Here is not implemented. When we change the

target position, the tip of the robot follows the target. Furthermore, for that particular target, we can

fetch the joints angle value. Later we can feed the data to the custom robot for inverse kinematics.

6. RECOMMENDATIONS :

❖ Before experimenting with inverse kinematics, we should experiment with forwarding kinetics.

It builds good knowledge on robotics arm movement.

http://www.srinivaspublication.com/

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 85

❖ The link for the complete project can be found https://github.com/sudipchakraborty/An-

Inverse-Kinematics-Demonstration-using-C-and-CoppeliaSim

❖ More research needs to implement into practical implementation.

❖ Before creating our own, we recommend observing and understand the overall architecture of

the Experiment.

❖ From the joints result fetching by P.C. application from the robot simulator, we can feed to the

real robot. Moreover, the robot driver drives the joint angle to calculate Inverse kinematics,

which consumes a lot of processing power. Using this procedure, we can be built the driver

with a lower footprint microcontroller like Arduino NANO, Arduino U.N.O.

❖ If we did not get the desired result, we should check the D.H. parameter, given the length and

rotation value inside the textbox in different places.

❖ We can get Target position data from a 3D depth camera or an ultrasonic sensor to drive the

robot.

7. CONCLUSION :

I.K. is the essential part of the articulated robotics arm or serial manipulator. Lots of solutions are

available in the field. Nevertheless, most of the procedure is proprietary, cannot be accessed by the

robot researcher. Using the CoppeliaSim robot simulator, we can solve our inverse kinematics issue.

Following the described procedure, we can easily make our custom robot and move on to the given

target. The target can drive by a 3D Depth camera or sonar sensor. With some more research, we can

implement it into practical industrial applications. It will distribute the computation overhead to the

High resourced object. Furthermore, we can use a low power board with a low-footprint CPU for the

motor driver, which drives the robot.

REFERENCES :

[1] Chakraborty, Sudip, & Aithal, P. S., (2021). Forward Kinematics Demonstration of 6DF Robot

using CoppeliaSim and C#. International Journal of Applied Engineering and Management Letters

(IJAEML), 5(1), 29-37. DOI: http://doi.org/10.5281/zenodo.4680570.

[2] Chakraborty, Sudip, & Aithal, P. S., (2021). A Custom Robotic A.R.M. in CoppeliaSim.

International Journal of Applied Engineering and Management Letters (IJAEML), 5(1), 38-50.

DOI: http://doi.org/10.5281/zenodo.4700297.

[3] Deepak Tolani, Ambarish Goswami, Norman I. Badler, (2000). Real-Time Inverse Kinematics

Techniques for Anthropomorphic Limbs. Graphical Models, 62(5), 353-388. DOI:

https://doi.org/10.1006/gmod.2000.0528.

[4] Manocha, D. and Canny, J. F. (1994). Efficient inverse kinematics for general 6R manipulators.

IEEE Transactions on Robotics and Automation, 10(5), 648-657, DOI: 10.1109/70.326569.

[5] Wang, L. T. and Chen, C. C. (1991). A combined optimization method for solving the inverse

kinematics problems of mechanical manipulators. IEEE Transactions on Robotics and Automation,

7(4), 489-499, DOI: 10.1109/70.86079.

[6] Goldenberg, A. Benhabib, B. and Fenton, R. (1985). A complete generalized solution to the inverse

kinematics of robots, IEEE Journal on Robotics and Automation, 1(1), 14-20, DOI:

10.1109/JRA.1985.1086995.

[7] Tevatia, G. and Schaal, S. (2000). Inverse kinematics for humanoid robots. Proceedings 2000 ICRA.

Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia

Proceedings (Cat. No.00CH37065), pp. 294-299, Vol.1, DOI: 10.1109/ROBOT.2000.844073.

[8] Samuel R. Buss and Jin-su Kim (2011). Selectively Damped Least Squares for Inverse Kinematics,

University of California, San Diego, Pages 37-49, DOI: 10.1080/2151237X.2005.10129202

[9] Baerlocher, P., Boulic, R. (2004). An inverse kinematics architecture enforcing an arbitrary number

of strict priority levels. Vis Comput., 20(1), 402–417. https://doi.org/10.1007/s00371-004-0244-4.

[10] Baker, D. R., Wampler, C. W. (1988). On the Inverse Kinematics of Redundant Manipulators. The

International Journal of Robotics Research, 7(2), 3-21. DOI:10.1177/027836498800700201.

http://www.srinivaspublication.com/
https://github.com/sudipchakraborty/An-Inverse-Kinematics-Demonstration-using-C-and-CoppeliaSim
https://github.com/sudipchakraborty/An-Inverse-Kinematics-Demonstration-using-C-and-CoppeliaSim
http://doi.org/10.5281/zenodo.4680570
http://doi.org/10.5281/zenodo.4700297
https://doi.org/10.1006/gmod.2000.0528
https://www.tandfonline.com/author/Kim%2C+Jin-Su
https://doi.org/10.1007/s00371-004-0244-4

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 86

[11] Sreenivas Tejomurtula, Subhash Kak (1999). Inverse kinematics in robotics using neural networks,

Information Sciences, 116(2–4), 147-164, DOI: https://doi.org/10.1016/S0020-0255(98)10098-1.

[12] Aristidou, A. Lasenby, J. Chrysanthou, Y. Shamir, A. (2017). Inverse Kinematics Techniques in

Computer Graphics: A Survey. COMPUTER GRAPHICS forum, pp. 1–24. DOI:

https://doi.org/10.1111/cgf.13310

[13] Andreas Aristidou, Joan Lasenby, (2011). FABRIK: A fast, iterative solver for the Inverse

Kinematics problem. Graphical Models, 73(5), 243-260, DOI:

https://doi.org/10.1016/j.gmod.2011.05.003.

[14] Kucuk, S. and Bingul, Z. (2004). The inverse kinematics solutions of industrial robot manipulators.

Proceedings of the IEEE International Conference on Mechatronics, I.C.M. '04., 2004, pp. 274-

279, DOI: 10.1109/ICMECH.2004.1364451.

[15] Muller-Cajar, R., Mukundan, R. (2007). Triangulation - A New Algorithm for Inverse Kinematics.

Hamilton, New Zealand: Image and Vision Computing New Zealand (IVCNZ) 2007 Conference,

5-7 Dec 2007. Proceedings of Image and Vision Computing New Zealand, 181-186.

[16] Manfred L. Husty, Martin Pfurner, Hans-Peter Schröcker, (2007). A new and efficient algorithm

for the inverse kinematics of a general serial 6R manipulator. Mechanism and Machine Theory,

42(1), 66-81, DOI: https://doi.org/10.1016/j.mechmachtheory.2006.02.001.

[17] C. s. g. Lee and M. Ziegler, (1984). Geometric Approach in Solving Inverse Kinematics of PUMA

Robots. IEEE Transactions on Aerospace and Electronic Systems, 20(6), 695-706, DOI:

10.1109/TAES.1984.310452.

[18] Parker, J. Khoogar, A., and D. Goldberg, (1989). Inverse kinematics of redundant robots using

genetic algorithms. IEEE International Conference on Robotics and Automation, Scottsdale, AZ,

pp. 271-276. DOI: 10.1109/ROBOT.1989.100000.

[19] Shaher Momani, Zaer S. Abo-Hammour, and Othman M. K. Alsmadi (2016). Solution of Inverse

Kinematics Problem using Genetic Algorithms. Applied Mathematics & Information Sciences,

10(1), 1-9. DOI: 10.12785/amis/Solution of inverse kinematics problem.

[20] Raşit Köker, Cemil Öz, Tarık Çakar, Hüseyin Ekiz (2004). A study of neural network-based inverse

kinematics solution for a three-joint robot. Robotics and Autonomous Systems, 49(3–4), 227-234,

DOI: https://doi.org/10.1016/j.robot.2004.09.010.

[21] Beeson, P. and Ames, B. (2015). TRAC-IK: An open-source library for improved solving of

generic inverse kinematics. IEEE-RAS 15th International Conference on Humanoid Robots

(Humanoids), 2015, pp. 928-935, DOI: 10.1109/HUMANOIDS.2015.7363472.

[22] Pyung Chang, (1987). A closed-form solution for inverse kinematics of robot manipulators with

redundancy. IEEE Journal on Robotics and Automation, 3(5), 393-403, DOI:

10.1109/JRA.1987.1087114.

[23] Chiaverini, S. Siciliano, B. and Egeland, O. (1994). Review of the damped least-squares inverse

kinematics with experiments on an industrial robot manipulator. IEEE Transactions on Control

Systems Technology, 2(2), 123-134, DOI: 10.1109/87.294335.

[24] Bertram, D., Kuffner, J., Dillmann, R., and Asfour, T. (2006). An integrated approach to inverse

kinematics and path planning for redundant manipulators. Proceedings of IEEE International

Conference on Robotics and Automation, ICRA 2006, pp. 1874-1879, DOI:

10.1109/ROBOT.2006.1641979.

[25] Bekir Karlik, Serkan Aydin (2000). An improved approach to the solution of inverse kinematics

problems for robot manipulators. Engineering Applications of Artificial Intelligence, 13(2), 159-

164, DOI: https://doi.org/10.1016/S0952-1976(99)00050-0.

[26] Xu, D., Acosta Calderon, C.A., Gan, J.Q. et al. (2005). An analysis of the inverse kinematics for

a 5-DOF manipulator. Int J Automat Comput., 2(1), 114–124, DOI:

https://doi.org/10.1007/s11633-005-0114-1.

http://www.srinivaspublication.com/
https://doi.org/10.1016/S0020-0255(98)10098-1
https://doi.org/10.1111/cgf.13310
https://doi.org/10.1016/j.mechmachtheory.2006.02.001
https://doi.org/10.1016/j.robot.2004.09.010
https://doi.org/10.1016/S0952-1976(99)00050-0
https://doi.org/10.1007/s11633-005-0114-1

International Journal of Case Studies in Business, IT, and Education

(IJCSBE), ISSN: 2581-6942, Vol. 5, No. 1, May 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al, (2021); www.srinivaspublication.com PAGE 87

[27] Ahmed El-Sherbiny, Mostafa A. Elhosseini, Amira Y. Haikal, (2018). A comparative study of soft

computing methods to solve inverse kinematics problem. Ain Shams Engineering Journal, 9(4),

2535-2548, DOI: https://doi.org/10.1016/j.asej.2017.08.001.

[28] John Q. Gan, Eimei Oyama, Eric M. Rosales and Huosheng Hu, (2004). A complete analytical

solution to the inverse kinematics of the Pioneer 2 robotic arm. Robotica, 23(1), 123–129.

Cambridge University Press. DOI: 10.1017/S0263574704000529

[29] Wang J, Li Y, Zhao X. (2010). Inverse Kinematics and Control of a 7-DOF Redundant Manipulator

Based on the Closed-Loop Algorithm. International Journal of Advanced Robotic Systems, 7(4), 1-

10. DOI:10.5772/10495.

[30] Iliukhin, V. N. Mitkovskii, K.B. Bizyanova, D. A. Akopyan, A. A. (2017). The Modeling of

Inverse Kinematics for 5 D.O.F. Manipulator. Procedia Engineering, 176(1), 498-505, DOI:

https://doi.org/10.1016/j.proeng.2017.02.349.

[31] Kelemen, M., Virgala, I., Lipták, T., Miková, Ľ., Filakovský, F., Bulej, V. A. (2018). Novel

Approach for an Inverse Kinematics Solution of a Redundant Manipulator. Appl. Sci., 8(1), 2229.

https://doi.org/10.3390/app8112229.

http://www.srinivaspublication.com/
https://doi.org/10.1016/j.asej.2017.08.001
https://doi.org/10.1016/j.proeng.2017.02.349
https://doi.org/10.3390/app8112229

