
International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 1, June 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al., (2021); www.srinivaspublication.com PAGE 153

Demonstration of Drawing by Robotic Arm

using RoboDK and C#

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2ViceChancellor, Srinivas University, Mangalore, India

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

Subject Area: Artificial Intelligence & Robotics.

Type of the Paper: Simulation-based Research.

Type of Review: Peer Reviewed as per |C|O|P|E| guidance.

Indexed In: OpenAIRE.

DOI: https://doi.org/10.5281/zenodo.5100536

Google Scholar Citation: IJAEML

International Journal of Applied Engineering and Management Letters (IJAEML)

A Refereed International Journal of Srinivas University, India.

Crossref DOI : https://doi.org/10.47992/IJAEML.2581.7000.0099

© With Authors.

This work is licensed under a Creative Commons Attribution-Non-Commercial 4.0 International

License subject to proper citation to the publication source of the work.

Disclaimer: The scholarly papers as reviewed and published by the Srinivas Publications (S.P.),

India are the views and opinions of their respective authors and are not the views or opinions

of the S.P. The S.P. disclaims of any harm or loss caused due to the published content to any

party.

How to Cite this Paper:

Chakraborty, Sudip, & Aithal, P. S., (2021). Demonstration of Drawing by Robotic Arm

using RoboDK and C#. International Journal of Applied Engineering and Management

Letters (IJAEML), 5(1), 153-158. DOI: https://doi.org/10.5281/zenodo.5100536

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com
https://doi.org/10.5281/zenodo.5100536
https://scholar.google.com/citations?user=Wb7oZPYAAAAJ
https://search.crossref.org/?q=10.47992%2FIJAEML.2581.7000.0099&from_ui=yes
https://doi.org/10.5281/zenodo.5100536

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 1, June 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al., (2021); www.srinivaspublication.com PAGE 154

Demonstration of Drawing by Robotic Arm using

RoboDK and C#

Sudip Chakraborty1 & P. S. Aithal2
1Post-Doctoral Researcher, College of Computer science and Information science, Srinivas

University, Mangalore-575 001, India

OrcidID: 0000-0002-1088-663X; E-mail: sudip.pdf@srinivasuniversity.edu.in
2ViceChancellor, Srinivas University, Mangalore, India

OrcidID: 0000-0002-4691-8736; E-Mail: psaithal@gmail.com

ABSTRACT

Purpose: Robots are transforming the world, and soon they will take part or assist in our all-

daily life activities. There are several fields where robots are already doing well, like Surgery,

painting, industrial automation, autonomous navigation, engraving, 3D printing, and many

more. The robot is nothing but consists of some mechanical movement driven by functions and

algorithms. To get the perfect result, the algorithm working behind the scene also needs to be

perfect. In all the above fields, need to reach the end effector at the exact position. That is why

we need serious research on it. Otherwise, it will remain a plaything, cannot be engaged in an

important role. Before implementing it into an actual application, we need to test in a simulated

environment, especially when writing new methods. The simulation environment is the safest

place where anything that goes wrong cannot damage a physical entity. So, the robot

researcher prefers the simulator. The RoboDK is one of the famous robot simulators. Its

interface is excellent and easy to test any commercial robot inside the IDE. In our research

will see how to keep marking the end-effector position using the graphical method. When our

end-effector moves, it holds a footprint to inspect later. This one is a minimalistic approach.

Through the simplified drawing method, we can observe arm movement. This demonstration

will use an optimized version of C# API, which RoboDK provides.

Design/Methodology/Approach: In RoboDK IDE, we can create a new station or import

existing built-in available stations. Our application drives the simulator robot. It is developed

in C# language using Microsoft visual studio 2019 community edition. Both applications

communicate through socket communication. Pressing the mouse's left click, when we move

the mouse, it calculates the mouse pointer position and maps the value based on the robot

drawing area. Then the values are sent to the simulated robot. Fetching the value, RoboDK

moves into the desired position.

Findings/result: Using our research works, the researcher can get some references to enhance

their research work. We keep our code as simple as possible to be understood quickly and

easily integrate into their research work.

Originality/Value: We search the research work on RoboDK and C# language. Most of the

documents are available in the python language, even in little bit documents present in the

RoboDK example collection. So, we decided to migrate from python to our native language,

C#. That is why this research work. After lots of hard work, we achieved it. If anyone wants to

research RoboDK using C# API, it can reference their research work.

Paper Type: Simulation-based Research.

Keywords: Robotic drawing, Robot simulator, RoboDK, Inverse Kinematics.

1. INTRODUCTION :

Nowadays, the robot is doing many activities. Some jobs need to take care of their perfections, and

some need mechanical strength. Few of them need extreme care about all steps where from program to

automatic movement demands a robust architecture. In medical robotics, where remote operation is

happening, all physical activity of the robotic arm needs highly accurate. In the CNC, an engraving kind

mailto:sudip.pdf@srinivasuniversity.edu.in
mailto:psaithal@gmail.com

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 1, June 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al., (2021); www.srinivaspublication.com PAGE 155

of application also needs precise movement; otherwise, the quality of the output goes wrong. All the

above processes need to exercise before the practical implementation of the robot. Otherwise, it can

become a severe issue for property and human life. Moreover, machining activities can damage physical

entities on improper data flow. That is why we need to work out in simulator first. For this purpose, we

need a good robot simulator to test the application as naturally as possible. After much research, we

found the RoboDK robot simulator. It has provided C# API to control from outside of the simulator

environment. Studying the API, we optimized for our application to continue the research work. We

designed a user interface for interacting with robots. When the end effector of the robotic arm moves,

it draws a point. We can inspect the point for our algorithm's effectiveness. When the C# application

starts, it communicates with the robot. It fetches the robot’s name, robot type, etc., from RoboDK. The

information is stored in the application variable for further communication. Every RoboDK object has

a unique dynamic id. All commands are sent from the application to the RoboDK must be passed object

id as an argument.

2. RELATED WORKS :

Patrick Tresset et al. present a robot, Paul, which is a human face drawing robot as a human does. They

implement a visual feedback mechanism to permit the robot to augment and improve a drawing

iteratively. The visual feedback is computational as it involves a purely internal (memory-based)

representation of regions to render via shading by the robot [1]. S. Calinon et al., in their paper, presents

a robot capable of drawing artistic portraits. Their research is based on face detection and image

reconstruction and classical tools for trajectory planning of a 4 DOFs robot arm using speech

recognition and speech synthesis to conduct the scenario [2]. G. Jean-Pierre et al. present an artist robot

that draws portraits like a human artist. They use image processing at the back end [3]. R. Y. Putra et

al., in their research, a 3 DOF arm drawing robot was built. An inverse kinematic model of the robot

arm is made using the artificial neural network method. An artificial neural network model was

implemented in a GUI application. The ANN model can work in real-time to control arm robot

movement to reach specific coordinates. [4]. Chyi-Yeu Lin et al., in their research, developed a robot,

which draws the face portrait [5]. S. Jain et al., in their paper, demonstrates a robot equipped with force

sensing capability that can draw portraits on a non-calibrated, arbitrarily shaped surface. The robot can

draw on a non-calibrated surface by orienting its drawing pen generally to the drawing surface. Several

portraits were drawn successfully on a flat surface without calibration [6]. D. Song et al. present a semi-

autonomous robotic pen-drawing system capable of creating pen art on an arbitrary surface with varying

thickness of pen strokes without reconstructing the surface explicitly. Their robotic system relies on an

industrial, seven-degree-of-freedom (7DoF) manipulator that can be both position- and impedance-

controlled. They use a vector-graphics engine to take an artist's pen drawing as input and generate

Bézier spline curves with varying offsets [7]. K. W. Lo et al. their paper describes the real-time

capturing and data analysis of the brush footprint using the platform's new hardware and software

capabilities. They include a transparent drawing plate and an underneath camera system, together with

projective rectification and video segmentation algorithms [8]. Avinash Kumar Singh et al. research

with NAO humanoid robot. They address the fundamental issue of defining a relationship between the

points of the image plane and NAO end-effector position [9]. K. Mochizuki et al. paper mainly deals

with robot developmental learning on drawing and discusses the influences of physical embodiment on

the task. They developed incremental imitation learning to imitate and set the robot's drawing skill using

basic shapes: circle, triangle, and rectangle [10].

3. OBJECTIVES :

This research aims to provide some reference information to the robot researcher for their study on

robot simulators. They write methods and algorithms for some specific tasks on their robot. The newly

implemented methods should test into the simulator Before implementing them into the practical

environment. They always find some excellent simulators for the POC (proof of concept). Here we

created a simulator environment to test the code. This research used the RoboDK simulator, which is

one of the best simulators now. We control the arm movement from the external environment. We make

our application using Microsoft visual studio that connects with the RoboDK through the TCP/IP

socket. The RoboDK provides C# API. In our research, we created an optimized API which we

discussed in the research and methodology section.

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 1, June 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al., (2021); www.srinivaspublication.com PAGE 156

4. APPROACH AND METHODOLOGY :

Figure 1 depicts the architecture of our research methodology. Here the C# application is the coordinator

between various parts of the project. When the application starts, create two main objects,

“Drawing_Board_Csharp” and “Drawing_Board_RoboDK,” with all other objects. The

“Drawing_Board_Csharp” object is responsible for local drawing. When the object is created, it also

creates a graphics object from the instance of the panel. This graphics object helps draw the line on the

user interface “Panel,” which is available in the Visual Studio Toolbox. We add code inside the mouse

move event on panel control. When the mouse moves on the panel, it fires the Mouse move event and

captures the current mouse X and Y position to push into a point buffer. In every mouse move, the

graphics object draws a line using the last two pushed point buffers.

Another important object is “Drawing_Board_RoboDK.,” which creates another main object, the

RoboDK manager class. It has several methods. “Connect” methods are responsible for connecting with

the robot. The “Set color” method is used to change the drawing line color. The “Add Curve” methods

are the main methods used to draw lines on the board attached to the robot. To delete the existing

drawing line, we use the “Delete” method. All commands are sent to the robot through the TCP/IP

communication channel. This channel is created when the robot manager class starts. When RoboDK

runs, the TCP/IP server runs and waits for client requests. When any request comes into port 20500, it

receives the request and response OK if the command is in the correct format. Several errors may be

present inside the received packet. The most common issue we found object id does not match. When

we send a command with an improper object id, it throws this type of exception.

When the mouse moves, local drawing is initiated by the C# drawing object. Parallelly, it draws in the

remote places, i.e., inside the RoboDK simulator. The local mouse coordinate is converted into a remote

coordinate and sends to the “Drawing_Board_RoboDK” object. The point is pushed into a points buffer.

Then from the point buffer, fetching the last two-point, create a point object. This point object sends

using the Add_Curve method. When drawing the curve, it returns a curve object id, which we store into

the point buffer. It is required when we want to clear the drawing. Currently, we use this curve object

to set the color object.

Fig. 1: Architecture of proposed methodology

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 1, June 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al., (2021); www.srinivaspublication.com PAGE 157

5. EXPERIMENT :

Now, let us experiment with our research work. We need two software:

one RoboDK and the other one is C# application. For RoboDK, we need

to download it from their website. For the C# application, we have

already developed. The source code link can be found in recommends

section. The two application is communicated through TCP/IP Socket

communication. For the same PC, the IP address is 127.0.0.1, which is

the localhost address. And the Port number is 20500. Open RoboDK

application. Inside the File menu, open the “Drawing with a robot”

file from “Example-07.d -Drawing with a robot”. Alternatively, we

can open it from the downloaded folder. After opening the file, the

RoboDK environment looks like figure 2. No interaction is required to move the robot inside the

RodoDK IDE. Everything will be controlled from our C#

Application.

Now we need to open the C# application. It looks like figure 3.

When the application tries to connect with available Robots in

RoboDK, it returns the instance id if the connection is successful. It

stores into a variable. In the C# application, we use the panel control

to draw. When we move the mouse inside the panel, it shows the X

and Y position of the mouse into the respective textbox. Still, we are

seeing that nothing is drawing on the local or the remote board. Now

Pressing the Mouse, we need to move anywhere inside the panel; it

will draw as the mouse move. Figure 4 is the example of the user

moving mouse inside the panel, and figure 5 depicts the remote robot

has drawn the same thing as we move locally. Behind the scene, two

methods are working. One is local drawing, and another one is

remote drawing. Calculating the mouse coordinate, it sends to the

robot to move. The robot receives the points and draws the line

between two points. It is a simulated environment. That is why we

need to send another packet to set the drawing color. The pen is

connected to a real robot, and the line will draw automatically as the

arm moves.

Now let us see if something happens which is not expected. If

not drawing inside the remote board. This error may happen if

communication is not established between two applications. In

our C# application, we provide one connect button. When the application starts, it checks the connection

with RoboDK automatically. If the connection succeeds, The Back color of the button turns green. If

not, turn red. Most of the time, we forget to start RoboDK first. That is why the error comes frequently.

If we see a communication error after running the application starts, we can again press the button to

communicate with RoboDK.

If multiple RoboDK applications are running, that may create a

communication error. If not solved, We have to debug one by one, observing

the flow of the code. If everything is OK, whatever drawing on the local

board will also replicate on the remote panel. Here Z-axis movement set

zero. For our custom application, we can send XYZ value so that it will

create three positions. We can observe that our robot is moving to our

expected location.

6. RECOMMENDATIONS :

Here is some suggestion for the researcher working on the robotic arm.

❖ This experiment can be used as a reference. Some customizations are required for the specific

project.

❖ The complete project code for C# and RoboDK station is available. It can download and use it.

Fig. 2: RoboDK Environment

Fig. 3: Application Window

Fig. 4: Drawing Example in apps

Fig. 5: Drawing in RoboDK

International Journal of Applied Engineering and Management

Letters (IJAEML), ISSN: 2581-7000, Vol. 5, No. 1, June 2021
SRINIVAS

PUBLICATION

Sudip Chakraborty, et al., (2021); www.srinivaspublication.com PAGE 158

❖ The project source code download link: https://github.com/sudipchakraborty/Drawing-By-

Robotic-Arm-using-RoboDK-and-C-Sharp

❖ The RoboDK software download link https://robodk.com/download

❖ For better results, the precision value can be adjusted on a need basis. Unnecessary precision

creates computation overhead. So before decimal point adjustment, we need to justify the

requirement of the high precision result. The computational overhead leads to slow updates

where PC or laptop resources are not enough to process faster.

7. CONCLUSION :

For robotic arm research, we need to provide accurate Results to navigate the particular position of the

end effector. Before implementing a new algorithm or change some mechanical specification, it should

test in a safe environment. Using a robot simulator is the best way to test the experiment. Here, we

experimented with a robotic arm end effector to navigate the target. We verified that our algorithm or

complete software framework chain is working correctly through a simplistic drawing approach.

REFERENCES :

[1] Patrick Tresset, Frederic Fol Leymarie, (2013). Portrait drawing by Paul the robot. Computers &

Graphics, 37(5), 348-363.

[2] Calinon, S., Epiney, J. and Billard, A. (2005). A humanoid robot drawing human portraits. 5th IEEE-

RAS International Conference on Humanoid Robots, pp. 161-166, DOI:

10.1109/ICHR.2005.1573562.

[3] Jean-Pierre, G. and Saïd, Z. (2012). The artist robot: A robot drawing like a human artist. IEEE

International Conference on Industrial Technology, pp. 486-491, DOI:

10.1109/ICIT.2012.6209985.

[4] Putra R. Y. et al. (2016). Neural network implementation for inverse kinematic model of arms

drawing robot. International Symposium on Electronics and Smart Devices (ISESD), pp. 153-157,

DOI: 10.1109/ISESD.2016.7886710.

[5] Chyi-Yeu Lin, Li-Wen Chuang and Thi Thoa Mac (2009). Human portrait generation system for

robot arm drawing. IEEE/ASME International Conference on Advanced Intelligent Mechatronics,

pp. 1757-1762, DOI: 10.1109/AIM.2009.5229810.

[6] Jain, S., Gupta, P., Kumar, V., and Sharma, K. (2015). A force-controlled portrait drawing robot.

IEEE International Conference on Industrial Technology (ICIT), pp. 3160-3165, DOI:

10.1109/ICIT.2015.7125564.

[7] Song, D., Lee, T. and Kim, Y. J. (2018). Artistic Pen Drawing on an Arbitrary Surface Using an

Impedance-Controlled Robot. IEEE International Conference on Robotics and Automation

(ICRA), pp. 4085-4090, DOI: 10.1109/ICRA.2018.8461084.

[8] Lo, K. W., Kwok, K. W., Wong, S. M. and Yam, Y. (2006). Brush Footprint Acquisition and

Preliminary Analysis for Chinese Calligraphy using a Robot Drawing Platform. IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2006, pp. 5183-5188, DOI:

10.1109/IROS.2006.281655.

[9] Avinash Kumar Singh, Nandi, G. C. (2016). NAO humanoid robot: Analysis of calibration

techniques for robot sketch drawing. Robotics and Autonomous Systems, 79(1), 108-121.

[10] Mochizuki, K., Nishide, S., Okuno, H. G., and Ogata, T. (2013). Developmental Human-Robot

Imitation Learning of Drawing with a Neuro Dynamical System. IEEE International Conference

on Systems, Man, and Cybernetics, 2013, pp. 2336-2341, DOI: 10.1109/SMC.2013.399.

https://github.com/sudipchakraborty/Drawing-By-Robotic-Arm-using-RoboDK-and-C-Sharp
https://github.com/sudipchakraborty/Drawing-By-Robotic-Arm-using-RoboDK-and-C-Sharp
https://robodk.com/download

